Patterns in the Distribution of Cladocerans (Crustacea: Branchiopoda) in Lakes Across a North–south Transect in Alaska, USA

Research paper by Jon N. Sweetman, John P. Smol

Indexed on: 01 Jan '06Published on: 01 Jan '06Published in: Hydrobiologia


The remains of cladocerans were examined from the surface sediments of 51 freshwater sites along a north–south transect spanning Alaska. We identified 27 cladoceran taxa from the sediments, consisting primarily of littoral chydorid species. Variations in cladoceran assemblages were related to measured physical and chemical variables using multivariate techniques. Redundancy analysis (RDA) indicated that lake depth, total phosphorus (TP), and altitude all had a significant influence in determining the composition of cladoceran assemblages. Cladoceran communities in tundra and forest-tundra lakes, which were relatively shallow and nutrient-poor, had relatively low abundances of pelagic Cladocera, and were primarily composed of several littoral chydorid species. Among pelagic cladoceran species, there was a distinct shift in dominance from the Bosminidae in lakes in the southern boreal forest region to Daphniidae in lakes in the northern boreal forest. Daphnia dominated lakes had significantly higher total phosphorus, specific conductivity, and calcium concentrations than lakes dominated by Eubosmina. Overall, the relative importance of physical and chemical factors in structuring cladocerans is similar to other previously studied regions, and suggests the Cladocera may be useful as ecological and paleoenvironmental indicators in this region.