Pattern transformation with DNA circuits.

Research paper by Steven M SM Chirieleison, Peter B PB Allen, Zack B ZB Simpson, Andrew D AD Ellington, Xi X Chen

Indexed on: 22 Nov '13Published on: 22 Nov '13Published in: Nature Chemistry


Readily programmable chemical networks are important tools as the scope of chemistry expands from individual molecules to larger molecular systems. Although many complex systems are constructed using conventional organic and inorganic chemistry, the programmability of biological molecules such as nucleic acids allows for precise, high-throughput and automated design, as well as simple, rapid and robust implementation. Here we show that systematic and quantitative control over the diffusivity and reactivity of DNA molecules yields highly programmable chemical reaction networks (CRNs) that execute at the macroscale. In particular, we designed and implemented non-enzymatic DNA circuits capable of performing pattern-transformation algorithms such as edge detection. We also showed that it is possible to fine-tune and multiplex such circuits. We believe these strategies will provide programmable platforms on which to prototype CRNs, discover bottom-up construction principles and generate patterns in materials.