Passive immunization of lactating mice with stanniocalcin-1 antiserum reduces mammary gland development, milk fat content, and postnatal pup growth.

Research paper by Deenaz D Zaidi, Kathi A KA James, Graham F GF Wagner

Indexed on: 15 Jun '06Published on: 15 Jun '06Published in: American journal of physiology. Endocrinology and metabolism


During pregnancy and lactation in rodents, stanniocalcin-1 (STC-1) production by the ovaries is upregulated markedly and released into the circulation. The mammary glands are one target of this systemically delivered hormone. The purpose of this study was to lower serum levels of STC-1 in lactating mice through passive immunization so as to monitor the effects on mammary gland function and postnatal pup growth. Passive immunization significantly reduced circulating hormone levels, and pup growth was significantly compromised (30%), even though control and experimental litters had ingested equal amounts of milk. When mammary glands were analyzed, the alveolar area was significantly reduced in antibody-treated mothers. An analysis of milk composition revealed no changes in lactose, protein, or electrolyte levels but an approximately 40% reduction in triglyceride levels. The latter was due to a significant reduction in mammary gland lipoprotein lipase activity and led to a significant buildup of triglycerides in the serum. Body fat content was also significantly reduced in pups from antibody-treated mothers, whereas pup fecal fat content was increased. In mothers, passive immunization also caused significant behavioral effects, in particular, increased locomotor and hindleg rearing activities. Collectively, the results suggest that systemically derived STC-1 has important effects on mammary gland development and the transfer of serum-based triglycerides into milk. Locomotor effects suggest that STC-1 also has a role in maternal behavior.