Parallel clustering of high-dimensional social media data streams

Research paper by Xiaoming Gao, Emilio Ferrara, Judy Qiu

Indexed on: 01 Feb '15Published on: 01 Feb '15Published in: Computer Science - Distributed; Parallel; and Cluster Computing


We introduce Cloud DIKW as an analysis environment supporting scientific discovery through integrated parallel batch and streaming processing, and apply it to one representative domain application: social media data stream clustering. Recent work demonstrated that high-quality clusters can be generated by representing the data points using high-dimensional vectors that reflect textual content and social network information. Due to the high cost of similarity computation, sequential implementations of even single-pass algorithms cannot keep up with the speed of real-world streams. This paper presents our efforts to meet the constraints of real-time social stream clustering through parallelization. We focus on two system-level issues. Most stream processing engines like Apache Storm organize distributed workers in the form of a directed acyclic graph, making it difficult to dynamically synchronize the state of parallel workers. We tackle this challenge by creating a separate synchronization channel using a pub-sub messaging system. Due to the sparsity of the high-dimensional vectors, the size of centroids grows quickly as new data points are assigned to the clusters. Traditional synchronization that directly broadcasts cluster centroids becomes too expensive and limits the scalability of the parallel algorithm. We address this problem by communicating only dynamic changes of the clusters rather than the whole centroid vectors. Our algorithm under Cloud DIKW can process the Twitter 10% data stream in real-time with 96-way parallelism. By natural improvements to Cloud DIKW, including advanced collective communication techniques developed in our Harp project, we will be able to process the full Twitter stream in real-time with 1000-way parallelism. Our use of powerful general software subsystems will enable many other applications that need integration of streaming and batch data analytics.