Paragenetic relations of diamond with silicate and carbonate minerals in the carbonatite-diamond system: Experiments at 8.5 GPa

Research paper by A. V. Spivak, Yu. A. Litvin

Indexed on: 06 Mar '12Published on: 06 Mar '12Published in: Geochemistry International


Phase relations of diamond and syngenetic minerals were experimentally investigated in the multicomponent system natural carbonatite-diamond at a pressure of 8.5 GPa and temperatures of 1300–1800°C (within the thermodynamic stability field of diamond). Under such conditions, the natural carbonatite of the Chagatai complex (Uzbekistan) acquires the mineralogy of Ca-rich eclogites (grospydites). The melting phase diagram of this system (syngenesis diagram) was constructed; an important element of this diagram is the diamond solubility curve in completely miscible carbonate-silicate melts (solubility values are 15–18 wt % C). The diamond solubility curve divides the phase diagram into two fields corresponding to (1) phase relations involving diamond-undersaturated melts-solutions of carbon with garnet as a liquidus phase (region of diamond dissolution) and (2) phase relations with diamond-saturated melts-solutions with diamond as a liquidus phase (region of diamond crystallization). During a temperature decrease in the region of diamond crystallization from carbonate-silicate melts, the crystallization of diamond is accompanied by the sequential formation of the following phase assemblages: diamond + garnet + melt, diamond + garnet + clinopyroxene + melt, and diamond + garnet + clinopyroxene + carbonate + melt, and the subsolidus assemblage diamond + garnet + clinopyroxene + carbonate is eventually formed. This is indicative of the paragenetic nature of silicate and carbonate minerals co-crystallizing with diamond and corresponding primary inclusions trapped by the growing diamond. A physicochemical mechanism was proposed for the formation of diamond in carbonate-silicate melts. The obtained results were used to analyze the physicochemical behavior of a natural diamond-forming magma chamber.