Paleozoic migmatites affected by high-grade tertiary metamorphism in the central Alps (Valle Bodengo, Italy)

Research paper by R. Hänny, B. Grauert, G. Soptrajanova

Indexed on: 01 Sep '75Published on: 01 Sep '75Published in: Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie


The Lepontine Gneiss Complex of southern Switzerland and northern Italy is characterized by high-grade metamorphism and intensive deformation of Alpine age with migmatites prevalent in the area with the highest metamorphic grade. Petrological and structural observations are generally inconclusive but indicate in some places an Alpine age for the migmatite formation. To determine the time of migmatite formation a geochronologic study was undertaken in one of the best exposed areas, the Valle Bodengo, Italy.Rb-Sr whole-rock errorchrons of intrusive migmatite phases and of two rather homogeneous granitoid gneiss bodies yield apparent ages between 280 and 350 m.y. They suggest a Hercynian or older igneous history for these rocks. The U-Pb ages of the euhedral zircons are highly discordant, but they do point to the presence of zircon components more than 450 m.y. old. The concordia-intercept ages are incompatible with the Rb-Sr data and the low initial 87Sr/86Sr ratios of about 0.706. These low initial ratios suggest that either the bulk of the granitoid material is not much older than Hercynian, or older crustal material was isotopically homogenized on a regional scale with rocks that had low Rb/Sr and 87Sr/86Sr ratios (e.g. the lower crust or upper mantle) during a Hercynian metamorphism.Rb-Sr small-scale whole-rock isochrons and tie lines of adjacent, lithologically different rock phases give Alpine ages, the best isochron yielding 22 m.y. This coincides with concordant U-Pb ages of monazites of 23 to 24 m.y. Rb-Sr mineral isoohrons (muscovite, biotite, feldspars, apatite) give ages of 18–21 m.y. Our interpretation is that this age pattern resulted due to rapid cooling after the climax of the last phase of the Alpine metamorphism and we conclude that high-grade metamorphic conditions existed during the upper Oligocene or early Miocene. Other investigators have suggested that the Alpine metamorphism had a climax 35–40 m.y. ago and that the younger mineral ages are a result of simple continuous cooling due to uplift. Based on this study and other recent geochronological studies in the Lepotine Gneiss Complex we suggest that there had to be a thermal maximum at about 20–25 m.y.The example of Valle Bodengo demonstrates that the areal coincidence of the zone of highest-grade metamorphism with the occurrence of migmatites does not necessarily mean that metamorphism and migmatite formation were coeval and related to each other.