DanielaWeiland1, BentBrachvogel23, Hue-TranHornig-Do1, Johannes F.G.Neuhaus1, TatjanaHolzer3, Desmond J.Tobin4, Carien M.Niessen567, Rudolf J.Wiesner156, Olivier R.Baris1


Accumulation of large-scale mitochondrial DNA (mtDNA) deletions and chronic, subclinical inflammation are concomitant during skin aging, thus raising the question of a causal link. To approach this, we generated mice expressing a mutant mitochondrial helicase (K320E-TWINKLE) in the epidermis in order to accelerate the accumulation of mtDNA deletions in this skin compartment. Mice displayed low amounts of large-scale deletions as well as a dramatic depletion of mtDNA in the epidermis and showed macroscopic signs of severe skin inflammation. The mtDNA alterations led to an imbalanced stoichiometry of mitochondrial respiratory chain complexes, inducing a unique combination of cytokine expression, causing a severe inflammatory phenotype, with massive immune cell infiltrates already before birth. Altogether, these data unraveled a previously unknown link between an imbalanced stoichiometry of the mitochondrial respiratory chain complexes and skin inflammation, and suggest that severe respiratory chain dysfunction, as observed in few cells leading to a mosaic in aged tissues, might be involved in the development of chronic sub-clinical inflammation.