Opsonisation of nanoparticles prepared from poly(β-hydroxy butyrate)-and poly(trimethylene carbonate)-b-poly(malic acid) amphiphilic diblock copolymers: Impact on the in vitro cell uptake by primary human macrophages and HepaRG hepatoma cells.

Research paper by Vene V Elise, Ghislaine G Barouti, Kathleen K Jarnouen, Thomas T Gicquel, Claudine C Rauch, Catherine C Ribault, Guillaume M GM Sophie, Sandrine S Cammas-Marion, Pascal P Loyer

Indexed on: 20 Sep '16Published on: 20 Sep '16Published in: International Journal of Pharmaceutics


The present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(β-malic acid)-b-poly(β-hydroxybutyrate) (PMLA-b-PHB) and poly(β-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA800-b-PHB7300, PMLA4500-b-PHB4400, PMLA2500-b-PTMC2800 and PMLA4300-b-PTMC1400. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymer derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers. Moreover, a more efficient uptake by macrophages and HepaRG cells is observed for NPs formulated from PMLA-b-PHB copolymers compared to that of PMLA-b-PTMC-based NPs. Interestingly, the uptake in HepaRG cells of NPs formulated from PMLA800-b-PHB7300 is much higher than that of NPs based on PMLA4500-b-PHB4400. In addition, the cell internalization of PMLA800-b-PHB7300 based-NPs, probably through endocytosis, is strongly increased by serum pre-coating in HepaRG cells but not in macrophages. Together, these data strongly suggest that the binding of a specific subset of plasmatic proteins onto the PMLA800-b-PHB7300-based NPs favors the HepaRG cell uptake while reducing that of macrophages.

More like this: