Quantcast

OpenSFDI: an open-source guide for constructing a spatial frequency domain imaging system.

Research paper by Matthew M Applegate, Kavon K Karrobi, Joseph J Angelo, Wyatt W Austin, Syeda S Tabassum, Enagnon E Aguénounon, Karissa K Tilbury, Rolf R Saager, Sylvain S Gioux, Darren D Roblyer

Indexed on: 13 Jan '20Published on: 12 Jan '20Published in: Journal of biomedical optics



Abstract

<p> <bold>Significance</bold>: Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption (μ<sub>a</sub>) and reduced scattering (<inline-formula><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mo>'</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula>) on a pixel-by-pixel basis. Measurements of μ<sub>a</sub> at different wavelengths enable the extraction of molar concentrations of tissue chromophores over a wide field, providing a noncontact and label-free means to assess tissue viability, oxygenation, microarchitecture, and molecular content. We present here openSFDI: an open-source guide for building a low-cost, small-footprint, three-wavelength SFDI system capable of quantifying μ<sub>a</sub> and <inline-formula><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mo>'</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula> as well as oxyhemoglobin and deoxyhemoglobin concentrations in biological tissue. The companion website provides a complete parts list along with detailed instructions for assembling the openSFDI system.</p><p> <bold>Aim</bold>: We describe the design of openSFDI and report on the accuracy and precision of optical property extractions for three different systems fabricated according to the instructions on the openSFDI website.</p><p> <bold>Approach</bold>: Accuracy was assessed by measuring nine tissue-simulating optical phantoms with a physiologically relevant range of μ<sub>a</sub> and <inline-formula><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mo>'</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula> with the openSFDI systems and a commercial SFDI device. Precision was assessed by repeatedly measuring the same phantom over 1 h.</p><p> <bold>Results</bold>: The openSFDI systems had an error of 0  ±  6  %   in μ<sub>a</sub> and -2  ±  3  %   in <inline-formula><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mo>'</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula>, compared to a commercial SFDI system. Bland-Altman analysis revealed the limits of agreement between the two systems to be   ±  0.004  mm<sup>  -  1</sup> for μ<sub>a</sub> and -0.06 to 0.1  mm<sup>  -  1</sup> for <inline-formula><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mo>'</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula>. The openSFDI system had low drift with an average standard deviation of 0.0007  mm<sup>  -  1</sup> and 0.05  mm<sup>  -  1</sup> in μ<sub>a</sub> and <inline-formula><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mo>'</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math></inline-formula>, respectively.</p><p> <bold>Conclusion</bold>: The openSFDI provides a customizable hardware platform for research groups seeking to utilize SFDI for quantitative diffuse optical imaging.</p>.