Quantcast

On the monoid of monotone injective partial selfmaps of $\mathbb{N}^{2}_{\leqslant}$ with cofinite domains and images

Research paper by Oleg Gutik, Inna Pozdniakova

Indexed on: 26 Jul '16Published on: 26 Jul '16Published in: Mathematics - Group Theory



Abstract

Let $\mathbb{N}^{2}_{\leqslant}$ be the set $\mathbb{N}^{2}$ with the partial order defined as the product of usual order $\leq$ on the set of positive integers $\mathbb{N}$. We study the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$ of monotone injective partial selfmaps of $\mathbb{N}^{2}_{\leqslant}$ having cofinite domain and image. We describe properties of elements of the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$ as monotone partial bijections of $\mathbb{N}^{2}_{\leqslant}$ and show that the group of units of $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$ is isomorphic to the cyclic group of order two. Also we describe the subsemigroup of idempotents of $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$ and the Green relations on $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$. In particular, we show that $\mathscr{D}=\mathscr{J}$ in $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$.