Quantcast

On the monoid of monotone injective partial selfmaps of $\mathbb{N}^{2}_{\leqslant}$ with cofinite domains and images, II

Research paper by Oleg Gutik, Inna Pozdniakova

Indexed on: 27 Jan '17Published on: 27 Jan '17Published in: arXiv - Mathematics - Group Theory



Abstract

Let $\mathbb{N}^{2}_{\leqslant}$ be the set $\mathbb{N}^{2}$ with the partial order defining as a product of usual order $\leq$ on the set of positive integers $\mathbb{N}$. We study the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$ of monotone injective partial selfmaps of $\mathbb{N}^{2}_{\leqslant}$ having cofinite domain and image. We describe the natural partial order on the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$. We proved that the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$ is isomorphic to the semidirect product $\mathscr{P\!O}\!_{\infty}^{\,+}(\mathbb{N}^2_{\leqslant})\rtimes \mathbb{Z}_2$ of the monoid $\mathscr{P\!O}\!_{\infty}^{\,+}(\mathbb{N}^2_{\leqslant})$ of oriental monotone injective partial selfmaps of $\mathbb{N}^{2}_{\leqslant}$ with cofinite domains and images by the group $\mathbb{Z}_2$. Also we describe the congruence $\sigma$ on the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$, which is generated by the natural order $\preccurlyeq$ on the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})$: $\alpha\sigma\beta$ if and only if $\alpha$ and $\beta$ are comparable in $\left(\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant}),\preccurlyeq\right)$. We prove that quotient semigroup $\mathscr{P\!O}\!_{\infty}^{\,+}(\mathbb{N}^2_{\leqslant})/\sigma$ is isomorphic to the free commutative monoid $\mathfrak{AM}_\omega$ over an infinite countable set and show that quotient semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^2_{\leqslant})/\sigma$ is isomorphic to the semidirect product of the free commutative monoid $\mathfrak{AM}_\omega$ over an infinite countable set by the group $\mathbb{Z}_2$.