On the monoid of cofinite partial isometries of $\mathbb{N}^n$ with the usual metric

Research paper by Oleg Gutik, Anatolii Savchuk

Indexed on: 21 Sep '19Published on: 19 Sep '19Published in: arXiv - Mathematics - Group Theory


In this paper we study the structure of the monoid $\mathbf{I}\mathbb{N}_{\infty}^n$ of cofinite partial isometries of the $n$-th power of the set of positive integers $\mathbb{N}$ with the usual metric for a positive integer $n\geqslant 2$. We describe the elements of the monoid $\mathbf{I}\mathbb{N}_{\infty}^n$ as partial transformation of $\mathbb{N}^n$, the group of units and the subset of idempotents of the semigroup $\mathbf{I}\mathbb{N}_{\infty}^n$, the natural partial order and Green's relations on $\mathbf{I}\mathbb{N}_{\infty}^n$. In particular we show that the quotient semigroup $\mathbf{I}\mathbb{N}_{\infty}^n/\mathfrak{C}_{\textsf{mg}}$, where $\mathfrak{C}_{\textsf{mg}}$ is the minimum group congruence on $\mathbf{I}\mathbb{N}_{\infty}^n$, is isomorphic to the symmetric group $\mathscr{S}_n$ and $\mathscr{D}=\mathscr{J}$ in $\mathbf{I}\mathbb{N}_{\infty}^n$. Also, we prove that for any integer $n\geqslant 2$ the semigroup $\mathbf{I}\mathbb{N}_{\infty}^n$ is isomorphic to the semidirect product ${\mathscr{S}_n\ltimes_\mathfrak{h}(\mathscr{P}_{\infty}(\mathbb{N}^n),\cup)}$ of the free semilattice with the unit $(\mathscr{P}_{\infty}(\mathbb{N}^n),\cup)$ by the symmetric group $\mathscr{S}_n$.