Quantcast

On the choice of solution subspace for nonstationary iterated Tikhonov regularization

Research paper by Guangxin Huang, Lothar Reichel; Feng Yin

Indexed on: 12 Aug '16Published on: 01 Aug '16Published in: Numerical Algorithms



Abstract

Abstract Tikhonov regularization is a popular method for the solution of linear discrete ill-posed problems with error-contaminated data. Nonstationary iterated Tikhonov regularization is known to be able to determine approximate solutions of higher quality than standard Tikhonov regularization. We investigate the choice of solution subspace in iterative methods for nonstationary iterated Tikhonov regularization of large-scale problems. Generalized Krylov subspaces are compared with Krylov subspaces that are generated by Golub–Kahan bidiagonalization and the Arnoldi process. Numerical examples illustrate the effectiveness of the methods.AbstractTikhonov regularization is a popular method for the solution of linear discrete ill-posed problems with error-contaminated data. Nonstationary iterated Tikhonov regularization is known to be able to determine approximate solutions of higher quality than standard Tikhonov regularization. We investigate the choice of solution subspace in iterative methods for nonstationary iterated Tikhonov regularization of large-scale problems. Generalized Krylov subspaces are compared with Krylov subspaces that are generated by Golub–Kahan bidiagonalization and the Arnoldi process. Numerical examples illustrate the effectiveness of the methods.