Quantcast

On the Borelness of the intersection operation

Research paper by Longyun Ding, Su Gao

Indexed on: 20 Sep '12Published on: 20 Sep '12Published in: Israel Journal of Mathematics



Abstract

We study the intersection operation of closed linear subspaces in a separable Banach space. We show that if the ambient space is quasi-reflexive, then the intersection operation is Borel. On the other hand, if the space contains a closed subspace with a Schauder decomposition into infinitely many non-reflexive spaces, then the intersection operation is not Borel. As a corollary, for a closed subspace of a Banach space with an unconditional basis, the intersection operation of the closed linear subspaces is Borel if and only if the space is reflexive. We also consider the intersection operation of additive subgroups in an infinite-dimensional separable Banach space, and show that if this intersection operation is Borel then the space is hereditarily indecomposable.