# On rational isomorphisms of Lie algebras

Research paper by **S. T. Sadetov**

Indexed on: **01 Jan '07**Published on: **01 Jan '07**Published in: **Functional Analysis and Its Applications**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

Let \(\mathfrak{n}\) be a finite-dimensional noncommutative nilpotent Lie algebra for which the ring of polynomial invariants of the coadjoint representation is generated by linear functions. Let \(\mathfrak{g}\) be an arbitrary Lie algebra. We consider semidirect sums \(\mathfrak{n} \dashv _\rho \mathfrak{g}\) with respect to an arbitrary representation ρ: \(\mathfrak{g}\) → der \(\mathfrak{n}\) such that the center z\(\mathfrak{n}\) of \(\mathfrak{n}\) has a ρ-invariant complement.We establish that some localization \(\tilde P(\mathfrak{n} \dashv _\rho \mathfrak{g})\) of the Poisson algebra of polynomials in elements of the Lie algebra \(\mathfrak{n} \dashv _\rho \mathfrak{g}\) is isomorphic to the tensor product of the standard Poisson algebra of a nonzero symplectic space by a localization of the Poisson algebra of the Lie subalgebra \((z\mathfrak{n}) \dashv \mathfrak{g}\). If \([\mathfrak{n},\mathfrak{n}] \subseteq z\mathfrak{n}\), then a similar tensor product decomposition is established for the localized universal enveloping algebra of the Lie algebra \(\mathfrak{n} \dashv _\rho \mathfrak{g}\). For the case in which \(\mathfrak{n}\) is a Heisenberg algebra, we obtain explicit formulas for the embeddings of \(\mathfrak{g}_P \) in \(\tilde P(\mathfrak{n} \dashv _\rho \mathfrak{g})\). These formulas have applications, some related to integrability in mechanics and others to the Gelfand-Kirillov conjecture.