Quantcast

On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images

Research paper by Oleg Gutik, Inna Pozdnyakova

Indexed on: 29 Jun '14Published on: 29 Jun '14Published in: Mathematics - Group Theory



Abstract

We study the semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ of monotone injective partial selfmaps of the set of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ having co-finite domain and image, where $L_n\times_{\operatorname{lex}}\mathbb{Z}$ is the lexicographic product of $n$-elements chain and the set of integers with the usual order. We show that $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is bisimple and establish its projective congruences. We prove that $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is finitely generated, and for $n=1$ every automorphism of $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is inner and show that in the case $n\geqslant 2$ the semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ has non-inner automorphisms. Also we show that every Baire topology $\tau$ on $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ such that $(\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}}),\tau)$ is a Hausdorff semitopological semigroup is discrete, construct a non-discrete Hausdorff semigroup inverse topology on $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$, and prove that the discrete semigroup $\mathscr{I\!O}\!_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ cannot be embedded into some classes of compact-like topological semigroups and that its remainder under the closure in a topological semigroup $S$ is an ideal in $S$.