On generalized CS-modules

Research paper by Qingyi Zeng

Indexed on: 10 Jan '16Published on: 10 Jan '16Published in: Czechoslovak Mathematical Journal


An S-closed submodule of a module M is a submodule N for which M/N is nonsingular. A module M is called a generalized CS-module (or briefly, GCS-module) if any S-closed submodule N of M is a direct summand of M. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right R-modules are projective if and only if all right R-modules are GCS-modules.