# On determination of Zero-sum $\ell$-generalized Schur Numbers for some
linear equations

Research paper by **Bidisha Roy, Subha Sarkar**

Indexed on: **27 Aug '18**Published on: **27 Aug '18**Published in: **arXiv - Mathematics - Combinatorics**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

Let $r$, $m$ and $k\geq 2$ be positive integers such that $r\mid k$ and let
$v \in \left[ 0,\lfloor \frac{k-1}{2r} \rfloor \right]$ be any integer. For any
integer $\ell \in [1, k]$ and $\epsilon \in \{0,1\}$, we let
$\mathcal{E}_{v}^{(\ell, \epsilon)}$ be the linear homogeneous equation defined
by $\mathcal{E}_{v}^{(\ell, \epsilon)}: x_1 + \cdots + x_{k-(rv+\epsilon)}
=x_{k-(rv+\epsilon-1)} +\cdots+ \ell x_{k}$. We denote the number
$S_{\mathfrak{z},m}^{(\ell, \epsilon)}(k;r;v)$, which is defined to be the
least positive integer $t$ such that for any $m$-coloring $\chi: [1, t] \to
\{0, 1,\ldots,m-1\}$, there exists a solution $(\hat{x}_1, \hat{x}_2, \ldots,
\hat{x}_k)$ to the equation $\mathcal{E}_{v}^{(\ell,\epsilon)}$ that satisfies
the $r$-zero-sum condition, namely, $\displaystyle\sum_{i=1}^k\chi(\hat{x}_i)
\equiv 0\pmod{r}$. In this article, we completely determine the constant
$S_{\mathfrak{z}, 2}^{(k,1)}(k;r;0)$, $S_{\mathfrak{z}, m}^{(k-1,1)}(k;r;0)$,
$S_{\mathfrak{z}, 2}^{(1,1)}(k;2;1)$ and $S_{\mathfrak{z}, r}^{(1,0)}(k;r;v)$.
Also, we prove upper bound for the constants
$S_{\mathfrak{z},2}^{(2,1)}(k;2;0)$ and $S_{\mathfrak{z},2}^{(1,1)}(k;2;v)$.