Numerical simulation on seasonal transport variations and mechanisms of suspended sediment discharged from the Yellow River to the Bohai Sea

Research paper by Guosheng Li, Hailong Wang, Heping Liao

Indexed on: 19 Oct '10Published on: 19 Oct '10Published in: Journal of Geographical Sciences


Based on sediment and discharge flux data for the Yellow River, realistic forcing fields and bathymetry of the Bohai Sea, a suspended sediment transport module is driven by a wave-current coupled model to research seasonal variations and mechanisms of suspended load transport to the Bohai Sea. It could be concluded that surface sediment concentration indicates a distinct spatial distribution characteristic that varies seasonally in the Bohai Sea. Sediment concentration is rather high near the Yellow River estuary, seasonal variations of which are controlled by quantity of sediment from the Yellow River, suspended sediment concentration reaches its maximum during summer and fall. Furthermore, sediment concentration decreases rapidly in other seas far from the Yellow River estuary and maintains a very low level in the center of the Bohai Sea, and is dominated by seasonal variations of climatology wind field in the Bohai Sea. Only a small amount of sediments imported from the Yellow River are delivered northwestward to the southern coast of the Bohai Bay. Majority of sediments are transported southeastward to the Laizhou Bay, where sediments are continuously delivered into the center of the Bohai Sea in a northeastward direction, and part of them are transported eastward alongshore through the Bohai Strait. 69% of sediments from the Yellow River are deposited near the river delta, 31% conveyed seaward, within which, 4% exported to the northern Yellow Sea through the Bohai Strait. Wind wave is the most essential contributor to seasonal variations of sediment concentration in the Bohai Sea, and the contribution of tidal currents is also significant in shallow waters when wind speed is low.