Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications

Research paper by Niloofar Nazeri, Mohammad Ali Derakhshan, Reza Faridi-Majidi, Hossein Ghanbari

Indexed on: 04 Nov '18Published on: 03 Nov '18Published in: Journal of Materials Science: Materials in Medicine


Electro-conductive nanocomposites have several applications in biomedical field. Development of a biocompatible electro-conductive polymeric materials is therefore of prime importance. In this study, electro-conductive nanofibrous mats of PLGA/CNT were fabricated through different methods including blend electrospinning, simultaneous PLGA electrospinning and CNT electrospraying and ultrasound-induced adsorption of CNTs on the electrospun PLGA nanofibers. The morphology and diameter of fibers were characterized by SEM and TEM, showing the lowest average diameters of 477 ± 136 nm for PLGA/MWCNT blend nanocomposites. MWCNT-sprayed PLGA specimens showed significant lower water contact angle (83°), electrical resistance (3.0 × 104 Ω) and higher mechanical properties (UTS: 5.50 ± 0.46 MPa) compared to the untreated PLGA scaffolds. Also, results of PC12 cell study demonstrated highest viability percentage on the MWCNT-sprayed PLGA nanofibers. We propose that the conductive nanocomposites have capability to use as tool for the neural regeneration and biosensors.