Quantcast

Not too big, not too small: a goldilocks approach to sample size selection.

Research paper by Kristine R KR Broglio, Jason T JT Connor, Scott M SM Berry

Indexed on: 05 Apr '14Published on: 05 Apr '14Published in: Journal of biopharmaceutical statistics



Abstract

We present a Bayesian adaptive design for a confirmatory trial to select a trial's sample size based on accumulating data. During accrual, frequent sample size selection analyses are made and predictive probabilities are used to determine whether the current sample size is sufficient or whether continuing accrual would be futile. The algorithm explicitly accounts for complete follow-up of all patients before the primary analysis is conducted. We refer to this as a Goldilocks trial design, as it is constantly asking the question, "Is the sample size too big, too small, or just right?" We describe the adaptive sample size algorithm, describe how the design parameters should be chosen, and show examples for dichotomous and time-to-event endpoints.