Quantcast

NO as a mediator during the early development of the cardiovascular system in the zebrafish.

Research paper by Bernd B Pelster, Sandra S Grillitsch, Thorsten T Schwerte

Indexed on: 17 Jun '05Published on: 17 Jun '05Published in: Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology



Abstract

As a general pattern innervation of the cardiovascular system appears late during development in vertebrate embryos, and cardiovascular control may be achieved by hormonal activity in early stages. However, very little is known about the onset of NO-responsiveness during development, which in adult vertebrates is known to play a key function in many physiological processes such as control of vascular tone, neurotransmission, macrophage activity, and angiogenesis. Analysis of the effect of NO on the cardiovascular system in zebrafish (Danio rerio) embryos and larvae revealed almost no effect on cardiac activity during chronic exposure to NO-producing chemicals, whereas vascular reactivity was observed in veins and arteries of the zebrafish in early developmental stages (5-6 days post fertilization). Chronic exposure also modified the development of the vascular system. The presence of an NO donor (sodium nitroprusside) did not change the patterning of the vascular bed, but it induced an earlier appearance of some blood vessels in the trunk region of the zebrafish larvae. The data reveal that NO plays an important role in the development of the cardiovascular system and in the ontogeny of the cardiovascular control system in fish.