Quantcast

NileTMRG at SemEval-2017 Task 4: Arabic Sentiment Analysis

Research paper by Samhaa R. El-Beltagy, Mona El Kalamawy, Abu Bakr Soliman

Indexed on: 23 Oct '17Published on: 23 Oct '17Published in: arXiv - Computer Science - Computation and Language



Abstract

This paper describes two systems that were used by the authors for addressing Arabic Sentiment Analysis as part of SemEval-2017, task 4. The authors participated in three Arabic related subtasks which are: Subtask A (Message Polarity Classification), Sub-task B (Topic-Based Message Polarity classification) and Subtask D (Tweet quantification) using the team name of NileTMRG. For subtask A, we made use of our previously developed sentiment analyzer which we augmented with a scored lexicon. For subtasks B and D, we used an ensemble of three different classifiers. The first classifier was a convolutional neural network for which we trained (word2vec) word embeddings. The second classifier consisted of a MultiLayer Perceptron, while the third classifier was a Logistic regression model that takes the same input as the second classifier. Voting between the three classifiers was used to determine the final outcome. The output from task B, was quantified to produce the results for task D. In all three Arabic related tasks in which NileTMRG participated, the team ranked at number one.