Network dynamics engaged in the modulation of motor behavior in healthy subjects.

Research paper by Eva-Maria EM Pool, Anne K AK Rehme, Gereon R GR Fink, Simon B SB Eickhoff, Christian C Grefkes

Indexed on: 12 Jun '13Published on: 12 Jun '13Published in: NeuroImage


Motor skills are mediated by a dynamic and finely regulated interplay of the primary motor cortex (M1) with various cortical and subcortical regions engaged in movement preparation and execution. To date, data elucidating the dynamics in the motor network that enable movements at different levels of behavioral performance remain scarce. We here used functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to investigate effective connectivity of key motor areas at different movement frequencies performed by right-handed subjects (n=36) with the left or right hand. The network of interest consisted of motor regions in both hemispheres including M1, supplementary motor area (SMA), ventral premotor cortex (PMv), motor putamen, and motor cerebellum. The connectivity analysis showed that performing hand movements at higher frequencies was associated with a linear increase in neural coupling strength from premotor areas (SMA, PMv) contralateral to the moving hand and ipsilateral cerebellum towards contralateral, active M1. In addition, we found hemispheric differences in the amount by which the coupling of premotor areas and M1 was modulated, depending on which hand was moved. Other connections were not modulated by changes in motor performance. The results suggest that a stronger coupling, especially between contralateral premotor areas and M1, enables increased motor performance of simple unilateral hand movements.