Quantcast

Neopterin formation through radical scavenging of superoxide by the macrophage synthesised antioxidant 7,8-dihydroneopterin.

Research paper by Gregory G Baxter-Parker, Hannah H Prebble, Sean S Cross, Nina N Steyn, Anastasia A Shchepetkina, Barry B Hock, Andrew A Cousins, Steven P SP Gieseg

Indexed on: 09 Mar '20Published on: 08 Mar '20Published in: Free Radical Biology & Medicine



Abstract

Clinical measurement of neopterin has been extensively used as a marker of inflammation but the in vivo mechanism generating neopterin is poorly understood. Neopterin is described as the oxidation product of 7,8-dihydroneopterin, a potent antioxidant generated by monocyte/macrophages in response to interferon-γ. While peroxyl and hydroxyl scavenging generates dihydroxanthopterin, hypochlorite efficiently oxidises 7,8-dihydroneopterin into neopterin, but this reaction alone does not explain the high levels of neopterin seen in clinical data. Here, we examine whether superoxide scavenging by 7,8-dihydroneopterin generates neopterin. U937 cells incubated with oxLDL showed a time dependent increase superoxide and 7,8-dihydroneopterin oxidation to neopterin. Neopterin generation in oxLDL or phorbol ester treated U937 cells or human monocytes was inhibited by apocynin and PEG-SOD. Addition of the myeloperoxidase inhibitor 4-aminobenzoic acid hydrazide (ABAH) had no effect of the superoxide generation or neopterin formation. 7,8-Dihydroneopterin reacted with superoxide/hydroxy radical mixtures generated by X-ray radiolysis to give neopterin. Formation of neopterin by superoxide derived from the xanthine/xanthine oxidase system was inhibited by superoxide dismutase. Neopterin formation was inhibited by apocynin in phorbol ester treated human carotid plaque rings in tissue culture. These results indicate that 7,8-dihydroneopterin scavenges superoxide and is subsequently oxidised into neopterin in cellular and cell-free experimental systems. Copyright © 2020. Published by Elsevier Inc.