Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway.

Research paper by Hongmei H Zhang, Shiyu S Liu, Yalei Y Zhou, Jiali J Tan, Honglei H Che, Fang F Ning, Xiaomei X Zhang, Wenxing W Xun, Na N Huo, Liang L Tang, Zhihong Z Deng, Yan Y Jin

Indexed on: 13 Oct '11Published on: 13 Oct '11Published in: Tissue engineering. Part A


The selection of a suitable scaffold material is important for dentin tissue regeneration, as the characteristics of biomaterials can potentially influence cell proliferation and differentiation. We compared the effects of different scaffolds on dentin regeneration based on dental pulp stem cells (DPSCs) and investigated the regulatory mechanisms of odontogenic differentiation of DPSCs by these scaffolds. Five different scaffolds were tested: demineralized dentin matrix (DDM), ceramic bovine bone (CBB), small intestinal submucosa (SIS), poly-L-lactate-co-glycolate, and collagen-chondroitin sulfate-hyaluronic acid. DPSCs cultured on DDM and CBB exhibited higher levels of alkaline phosphatase (ALP) activity and mRNA expression of bone sialoprotein, osteocalcin, dentin sialophosphoprotein (DSPP), and dentin matrix protein-1 (DMP-1) than those cultured on the other three scaffolds. Further, the phosphorylation levels of mitogen-activated protein kinase (MAPK) ERK1/2 and p38 in DPSCs cultured on DDM and CBB were also significantly enhanced compared with the other three scaffolds, and their inhibitors significantly inhibited odontogenic differentiation as assessed by ALP activity and mRNA expression of DSPP and DMP-1. The implantation experiment confirmed these results and showed a large amount of regular-shaped dentin-pulp complex tissues, including dentin, predentin, and odontoblasts only in the DDM and CBB groups. The results indicated that natural mineralized scaffolds (DDM and CBB) have potential as attractive scaffolds for dentin tissue-engineering-promoted odontogenic differentiation of DPSCs through the MAPK signaling pathway.