N-cadherin mediates the migration of MCF-10A cells undergoing bone morphogenetic protein 4-mediated epithelial mesenchymal transition.

Research paper by Ki-Sook KS Park, Maria Jose MJ Dubon, Barry M BM Gumbiner

Indexed on: 30 Dec '14Published on: 30 Dec '14Published in: Tumor Biology


Epithelial-mesenchymal transition (EMT) of mammary epithelial cells is important in both normal morphogenesis of mammary glands and metastasis of breast cancer. Cadherin switching from E-cadherin to N-cadherin plays important roles in EMT. We found that cadherin switching is important in bone morphogenetic protein 4 (BMP4)-induced EMT in MCF-10A cells. BMP4 increased the phosphorylation of SMAD proteins in MCF-10A cells. Canonical BMP4 signaling decreased the expression of E-cadherin and disrupted the polarity of the tight junction protein ZO-1 in MCF-10A cells. However, the expression of N-cadherin and SNAI2 was up-regulated in BMP4-treated MCF-10A cells. MCF-10A cells that expressed N-cadherin migrated into type I collagen gels in response to BMP4 when evaluated using three-dimensional culture assays. Thus, active canonical BMP4 signaling is important for the migration and EMT of mammary epithelial cells. Moreover, the decrease in E-cadherin and/or increase in N-cadherin may be required for BMP4-induced migration and EMT.