Multidrug Resistant Pseudomonas aeruginosa Causing Prosthetic Valve Endocarditis: A Genetic-Based Chronicle of Evolving Antibiotic Resistance.

Research paper by T Nicholas TN Domitrovic, Andrea M AM Hujer, Federico F Perez, Steven H SH Marshall, Kristine M KM Hujer, Laila E LE Woc-Colburn, Mark M Parta, Robert A RA Bonomo

Indexed on: 24 Oct '17Published on: 24 Oct '17Published in: Open forum infectious diseases


Background.  Successful treatment of infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa is thwarted by the emergence of antibiotic resistance and biofilm formation on prosthetic devices. Our aims were to decipher the molecular basis of resistance in a unique case of prosthetic valve endocarditis (PVE) caused by MDR P. aeruginosa. Methods.  Five sequential MDR P. aeruginosa blood isolates collected during a 7-month period were recovered from a patient suffering from PVE previously exposed to β-lactam antibiotics. Minimum inhibitory concentrations (MICs) of several classes of antibiotics were used to indicate clinical resistance characteristics; relatedness of the isolates was determined using multilocus sequence typing and repetitive sequence-based polymerase chain reaction. Amplification and sequencing of regulatory and resistance genes was performed. Results.  All isolates belonged to ST 298, possessed blaPDC-16, and were resistant to fluoroquinolones and carbapenems. In the course of therapy, we observed a >2-fold increase in cephalosporin resistance (4 µg/mL to >16 µg/mL). Sequencing of the AmpC regulator, ampR, revealed a D135N point mutation in cephalosporin-resistant isolates. Common carbapenemase genes were not identified. All isolates demonstrated a premature stop codon at amino acid 79 of the outer membrane protein OprD and mutations in the quinolone resistance-determining regions of gyrA and parC. Point mutations in nalC, an efflux pump regulator, were also observed. Conclusions.  In this analysis, we chart the molecular evolution of β-lactam resistance in a case of PVE. We show that mutations in regulatory genes controlling efflux and cephalosporinase production contributed to the MDR phenotype.