Quantcast

Moving object with fuel cells incorporated therein and method of controlling the same

Imported: 24 Feb '17 | Published: 06 Jan '04

Atsushi Tabata

USPTO - Utility Patents

Abstract

In a hybrid vehicle with fuel cells and an engine mounted thereon as energy output sources, a technique is employed that adequately changes a working energy output source according to a driving state of the hybrid vehicle. The hybrid vehicle has the engine and a motor, both enabling power to be output to an axle. The hybrid vehicle also has fuel cells as a main electric power supply for driving the motor. The technique changes the working energy output source between the fuel cells and the engine, in order to reduce the output of the fuel cells with consumption of a fuel for the fuel cells. With a decrease in remaining quantity of the fuel, the technique narrows a specific driving range, in which the motor is used as the power source. The technique also causes the engine to drive the motor as a generator and charges a battery not with electric power of the fuel cells but with electric power generated by the motor. This arrangement effectively prevents the fuel for the fuel cells from being excessively consumed in one driving mode. The fuel cells can thus be used preferentially in a specific driving state of the hybrid vehicle where the fuel cells have a high efficiency.

Description

These and other objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates the structure of a hybrid vehicle in a first embodiment according to the present invention;

FIG. 2 schematically illustrates the structure of a fuel cells system incorporated in the hybrid vehicle of the first embodiment;

FIG. 3 shows the internal structure of a transmission incorporated in the hybrid vehicle of the first embodiment;

FIG. 4 shows the relationship between the state of connection of the respective clutches, brakes, and one-way clutches and the position of the change-speed gear;

FIG. 5 shows an operation unit for selecting the gearshift position in the hybrid vehicle of the first embodiment;

FIG. 6 shows an instrument panel in the hybrid vehicle of the first embodiment;

FIG. 7 shows connections of input and output signals into and from a control unit incorporated in the hybrid vehicle of the first embodiment;

FIG. 8 is a map showing the working power source and the available speeds mapped to the respective driving conditions of the vehicle;

FIG. 9 is a map showing the available speeds mapped to the respective driving conditions of the vehicle at the position

2;

FIG. 10 is a map showing the available speed according to the driving conditions of the vehicle at the position L;

FIG. 11 is a map showing the available speed according to the driving conditions of the vehicle at the position R;

FIG. 12 is a flowchart showing an EV drive control routine executed in the first embodiment;

FIG. 13 is a flowchart showing a motor drive control routine executed in the first embodiment;

FIG. 14 is a flowchart showing an auxiliary machinery drive control routine executed in the first embodiment;

FIG. 15 is a flowchart showing a charging control routine executed in the first embodiment;

FIG. 16 shows the relationship between the charge level of a battery and the effective use of regenerative electric power;

FIG. 17 is a graph showing a variation in charging electric power plotted against the remaining charge SOC of the battery;

FIG. 18 shows the selection of generators according to the driving state of the vehicle;

FIG. 19 is a flowchart showing a generator drive control routine executed in the first embodiment;

FIG. 20 schematically illustrates the structure of another hybrid vehicle in a second embodiment according to the present invention;

FIG. 21 is a flowchart showing a 4WD control routine executed in the second embodiment;

FIG. 22 schematically illustrates the structure of still another hybrid vehicle in a third embodiment according to the present invention;

FIG. 23 shows the state of coupling in a sub-transmission in the structure of the third embodiment;

FIG. 24 is a map showing the state of change in the sub-transmission;

FIG. 25 is a map showing the state of change in the sub-transmission at the position R;

FIG. 26 shows an operation unit for selecting the gearshift position in the hybrid vehicle of the third embodiment;

FIG. 27 is a map showing a typical change speed pattern of a CVT in the hybrid vehicle of the third embodiment;

FIG. 28 is a map showing a variation in output torque against the accelerator travel in an engine drive area;

FIG. 29 is a map showing a process of changing the range of the MG area according to the remaining quantity of the FC fuel;

FIG. 30 is an exemplified map showing a variation in range of the MG area against the remaining quantity of the FC fuel;

FIG. 31 is a map showing the relationship between the assist torque and the remaining quantity of the FC fuel;

FIG. 32 is a flowchart showing an EV drive control routine executed in the third embodiment;

FIG. 33 is a flowchart showing a drive control routine executed in a fourth embodiment according to the present invention;

FIG. 34 shows a process of setting a reference value Lo, which is compared with the remaining quantity of gasoline;

FIG. 35 is a flowchart showing another drive control routine as a first modification of the fourth embodiment;

FIG. 36 is a flowchart showing still another drive control routine as a second modification of the fourth embodiment;

FIG. 37 shows an instrument panel in a hybrid vehicle of a fifth embodiment according to the present invention;

FIG. 38 is a flowchart showing an EV drive control routine executed in the fifth embodiment;

FIG. 39 shows variations in outputs from the respective power sources and electric power supplies in the EV drive control process;

FIG. 40 is a flowchart showing an auxiliary machinery drive control routine executed in the fifth embodiment;

FIG. 41 shows the process of changing over the working power source in the auxiliary machinery drive control process;

FIG. 42 is a flowchart showing a power assist control routine executed in the fifth embodiment;

FIG. 43 shows the process of changing over the working electric power supply in the power assist control process;

FIG. 44 is a flowchart showing a vehicle stop- or speed reduction-time control routine executed in the fifth embodiment;

FIG. 45 shows the process of changing over the working electric power supply in the vehicle stop- or speed reduction-time control process;

FIG. 46 is a map showing the available speeds mapped to the respective driving conditions of the vehicle in a first modification of the fifth embodiment;

FIG. 47 is a map showing the available speeds mapped to the respective driving conditions of the vehicle at the position

2 in the first modification of the fifth embodiment;

FIG. 48 is a map showing the available speed according to the driving conditions of the vehicle at the position L in the first modification of the fifth embodiment;

FIG. 49 is a map showing the available speed according to the driving conditions of the vehicle at the position R in the first modification of the fifth embodiment;

FIG. 50 is a flowchart showing a power assist control routine executed in the first modification of the fifth embodiment;

FIG. 51 shows the process of changing over the working electric power supply in the power assist control process;

FIG. 52 is a flowchart showing a power mode control routine executed in a second modification of the fifth embodiment;

FIG. 53 shows the process of changing over the working electric power supply in the power mode control process;

FIG. 54 shows a variation in power output in the power mode;

FIG. 55 schematically illustrates the structure of another hybrid vehicle in a sixth embodiment according to the present invention;

FIG. 56 is a flowchart showing a 4WD control routine executed in the sixth embodiment;

FIG. 57 shows variations in outputs of the respective power sources and electric power supplies in the 4WD control process;

FIG. 58 schematically illustrates the structure of still another hybrid vehicle in a seventh embodiment according to the present invention;

FIG. 59 is a flowchart showing an EV drive control routine executed in the seventh embodiment;

FIG. 60 is a flowchart showing a fuel cell activation control routine executed in the seventh embodiment;

FIG. 61 is maps used for specifying consuming electric power Est;

FIG. 62 is a graph showing a variation in remaining charge of the battery in the case of activation of the fuel cell;

FIG. 63 is a flowchart showing an engine drive point setting routine;

FIG. 64 is a graph showing the relationship between the drive point of the engine and the driving efficiency;

FIG. 65 is a graph showing the relationship between the power and the driving efficiency when the engine is driven on a working curve;

FIG. 66 schematically illustrates the structure of another hybrid vehicle in an eighth embodiment according to the present invention;

FIG. 67 shows an operation unit for selecting the gearshift position in the hybrid vehicle of the eighth embodiment;

FIG. 68 shows an instrument panel in the hybrid vehicle of the eighth embodiment;

FIG. 69 is a flowchart showing an EV drive control routine executed in the eighth embodiment;

FIG. 70 is a flowchart showing an external electric power supply activation control routine executed in the eighth embodiment;

FIG. 71 is a flowchart showing part of an EV drive control routine executed in a first modification of the eighth embodiment;

FIG. 72 is a graph showing a variation in specific value FGSL plotted against the remaining quantity GSL of gasoline;

FIG. 73 is a flowchart showing an EV drive control routine executed in a second modification of the eighth embodiment;

FIG. 74 shows variations in temperature and output of the fuel cell

60, output of the engine

10, and output of the motor

20 in the control process of the second modification;

FIG. 75 shows a distribution of output in a third modification of the eighth embodiment;

FIG. 76 is a flowchart showing a drive control routine executed in the third modification;

FIG. 77 schematically illustrates the structure of still another hybrid vehicle in a ninth embodiment according to the present invention;

FIG. 78 is a flowchart showing an engine warm-up control routine executed in the ninth embodiment;

FIG. 79 is a graph showing a variation in quantity of the FC fuel required for the warm-up plotted against the water temperature in the engine;

FIG. 80 is a flowchart showing an engine warm-up control routine as one modification of the ninth embodiment;

FIG. 81 is a flowchart showing an EV drive control routine executed in a tenth embodiment according to the present invention;

FIG. 82 shows the principle of control to reduce a torque variation in an eleventh embodiment according to the present invention;

FIG. 83 is a flowchart showing a damping control routine executed in the eleventh embodiment;

FIG. 84 is a flowchart showing a motor control routine executed in the damping control process;

FIG. 85 shows the principle of damping control in a modification of the eleventh embodiment;

FIG. 86 is a flowchart showing a damping control routine executed in the modification of the eleventh embodiment;

FIG. 87 shows a hybrid vehicle and a fuel supply unit in a twelfth embodiment according to the present invention;

FIG. 88 shows the connecting structure of a fuel inlet unit and fuel spouts in the hybrid vehicle of the twelfth embodiment;

FIG. 89 shows the connecting structure of another fuel inlet unit and fuel spouts;

FIG. 90 shows the structure of another hybrid vehicle in one modification of the twelfth embodiment;

FIG. 91 shows attachment of a fuel type sensor; and

FIG. 92 is a flowchart showing a fuel type detection routine executed in the hybrid vehicle of the modification.

Claims

1. A vehicle having at least two energy output sources including a fuel cell, said vehicle comprising:

2. A vehicle in accordance with claim 1, wherein said detector measures at least either one of the output sustaining ability of said fuel cell and the variation thereof, based on a remaining quantity of a fuel for said fuel cell.

3. A vehicle in accordance with claim 1, wherein said detector measures at least either one of the output sustaining ability of said fuel cell and the variation thereof, based on a loading state of said fuel cell.

4. A vehicle in accordance with claim 1, wherein said at least two energy output sources include said fuel cell and a heat engine.

5. A vehicle in accordance with claim 4, wherein said detector measures at least either one of the output sustaining ability of said heat engine and the variation thereof,

6. A vehicle in accordance with claim 1, wherein said output controller reduces a torque, which is to be output by utilizing said fuel cell, according to at least one of the output sustaining ability and a variation thereof.

7. A vehicle in accordance with claim 1, wherein said at least two energy output sources include a heat engine, said fuel cell, and a secondary battery,

8. A vehicle in accordance with claim 1, said vehicle further comprising:

9. A vehicle in accordance with claim 8, wherein said output controller lowers the predetermined degree, which is set as a target charge level of said accumulator, with a decrease in output sustaining ability of a specific energy output source that mainly outputs electric power to charge said accumulator.

10. A vehicle in accordance with claim 8, wherein said output controller reduces a ratio of an output of a specific energy output source, which mainly outputs electric power to charge said accumulator, to the total energy with a decrease in output sustaining ability of said specific energy output source.

11. A vehicle in accordance with claim 10, wherein said output controller heightens the predetermined degree, which is set as a target charge level of said accumulator, with a decrease in output sustaining ability of a specific energy output source that mainly outputs electric power to charge said accumulator.

12. A vehicle in accordance with claim 1, wherein said detector measures the variation in the output sustaining ability with regard to at least one of said at least two energy output sources, and

13. A vehicle in accordance with claim 1, wherein said output controller changes a working energy output source according to a driving state of said vehicle, so as to output the total energy,

14. A vehicle in accordance with claim 1, wherein said output controller changes a working energy output source according to a driving state of said vehicle, so as to output the total energy,

15. A vehicle in accordance with claim 14, wherein each of said at least two energy output sources has a mechanism that outputs rotational power to a drive shaft of said vehicle, and

16. A vehicle in accordance with claim 1, said vehicle further comprising: