Mossy Fibers Terminate Directly Within Purkinje Cell Zones During Mouse Development.

Research paper by Roy V RV Sillitoe

Indexed on: 11 Aug '15Published on: 11 Aug '15Published in: The Cerebellum


The cerebellum is organized into a map of zones that is manifested in various ways according to gene expression, anatomical connectivity, neuronal firing properties, behavioral specificity, and susceptibility to disease. At the center of every zone is the Purkinje cell, the principal cell type of the cerebellum and sole output of the cerebellar cortex. During development, Purkinje cells are thought to coordinate the zonal patterning of all other cell types. However, the morphogenetic mechanism that mediates the interaction between Purkinje cells and afferent fibers remains unclear. To address this problem in vivo, I took advantage of a rapid fluorescent-based transynaptic tracing approach to determine the nature of mossy fiber to Purkinje cell connectivity during early postnatal development, a period when the afferent map is assembling into clear-cut zonal circuits. By injecting WGA-Alexa 555 into the lower thoracic-upper lumber spinal cord, I found that spinocerebellar mossy fibers transynaptically transfer tracer into zones of Purkinje cells that are directly adjacent to the fibers. The traced Purkinje cell zones formed a zebrin-like pattern that was defined by the expression of neurofilament heavy chain (NFH), a marker of zones in the postnatal developing cerebellum. These results suggest that Purkinje cells generate the zonal circuit map by using molecular cues, neuronal activity, and synaptic contact.