Quantcast

Monte Carlo Investigation of Lattice Models of Polymer Collapse in Five Dimensions

Research paper by A. L. Owczarek, T. Prellberg

Indexed on: 31 Oct '02Published on: 31 Oct '02Published in: Physics - Statistical Mechanics



Abstract

Monte Carlo simulations, using the PERM algorithm, of interacting self-avoiding walks (ISAW) and interacting self-avoiding trails (ISAT) in five dimensions are presented which locate the collapse phase transition in those models. It is argued that the appearance of a transition (at least) as strong as a pseudo-first-order transition occurs in both models. The values of various theoretically conjectured dimension-dependent exponents are shown to be consistent with the data obtained. Indeed the first-order nature of the transition is even stronger in five dimensions than four. The agreement with the theory is better for ISAW than ISAT and it cannot be ruled out that ISAT have a true first-order transition in dimension five. This latter difference would be intriguing if true. On the other hand, since simulations are more difficult for ISAT than ISAW at this transition in high dimensions, any discrepancy may well be due to the inability of the simulations to reach the true asymptotic regime.