Molecular tweezers with a rotationally restricted linker and freely rotating porphyrin moieties.

Research paper by Rhys B RB Murphy, Duc-Truc DT Pham, Jonathan M JM White, Stephen F SF Lincoln, Martin R MR Johnston

Indexed on: 15 Aug '18Published on: 15 Aug '18Published in: Organic & Biomolecular Chemistry


The effect of the degree of conformational rigidity and/or flexibility on preorganisation in artificial molecular receptors continues to be actively explored by supramolecular chemists. This work describes a bis-porphyrin architecture, linked via a rigid polycyclic backbone, in which a sterically bulky 2,3,5,6-tetramethylphenyl diimide core restricts rotation to afford two non-interconvertible tweezer conformations; syn- and anti-. After separation, the host-guest chemistry of each conformation was studied independently. The difference in host geometry allows only the syn-conformation to form a strong 1 : 1 bis-porphyrin complex with the diamino ligand 1,4-diazabicyclo[2.2.2]octane (DABCO) (K11 = 1.25 × 108 M-1), with the anti-conformation adopting a 2 : 2 sandwich complex with DABCO (K22 = 5.57 × 1017 M-3).