Quantcast

Molecular architecture of nanocapsules, bilayer-enclosed solid particles of Cisplatin.

Research paper by Vladimir V Chupin, Anton I P M AI de Kroon, Ben B de Kruijff

Indexed on: 21 Oct '04Published on: 21 Oct '04Published in: Journal of the American Chemical Society



Abstract

Cisplatin nanocapsules represent a lipid formulation of the anticancer drug cis-diamminedichloroplatinum(II) (cisplatin) characterized by an unprecedented cisplatin-to-lipid ratio and exhibiting strongly improved cytotoxicity against tumor cells in vitro as compared to the free drug (Burger, K. N. J., et al. Nat. Med. 2002, 8, 81-84). Cisplatin nanocapsules are prepared by the repeated freezing and thawing of an equimolar dispersion of phosphatidylserine (PS) and phosphatidylcholine (PC) in a concentrated aqueous solution of cisplatin. Here, the molecular architecture of these novel nanostructures was elucidated by solid-state NMR techniques. 15N NMR and 2H NMR spectra of nanocapsules containing 15N- and 2H-labeled cisplatin, respectively, demonstrated that the core of the nanocapsules consists of solid cisplatin devoid of free water. Magic-angle spinning 15N NMR showed that approximately 90% of the cisplatin in the core is present as the dichloro species. The remaining 10% was accounted for by a newly discovered dinuclear Pt compound that was identified as the positively charged chloride-bridged dimer of cisplatin. NMR techniques sensitive to lipid organization, 31P NMR and 2H NMR, revealed that the cisplatin core is coated by phospholipids in a bilayer configuration and that the interaction between solid core and bilayer coat exerts a strong ordering effect on the phospholipid molecules. Compared to phospholipids in liposomal membranes, the motion of the phospholipid headgroups is restricted and the ordering of the acyl chains is increased, particularly in PS. The implications of these findings for the structural organization, the mechanism of formation, and the mode of action of cisplatin nanocapsules are discussed.