Modest Pollen Limitation of Lifetime Seed Production Is in Good Agreement with Modest Uncertainty in Whole-Plant Pollen Receipt.

Research paper by Jay A JA Rosenheim, Neal M NM Williams, Sebastian J SJ Schreiber, Joshua M JM Rapp

Indexed on: 26 Feb '16Published on: 26 Feb '16Published in: The American naturalist


We recently introduced a model that predicts the degree to which a plant's lifetime seed production may be constrained by unpredictable shortfalls of pollen receipt ("pollen limitation"). Burd's comment in this issue criticized our analysis, first by arguing that the empirical literature documents much higher levels of pollen limitation than our model predicts and then suggesting that the apparent discrepancy stemmed from our (1) underestimating the costs of securing a fertilized ovule and (2) assuming too little unpredictability in whole-plant pollen receipt. We reply as follows. First, the empirical literature must be consulted carefully. Burd relies on pollen supplementation experiments performed on parts of plants or on whole plants but during only one reproductive season for polycarpic perennials; in both cases, resource reallocation often leads to gross overestimates of pollen limitation. We comprehensively review pollen limitation estimates that are free of these estimation problems and find strong agreement with our model predictions. Second, although cost estimates for different components of seed production are imprecise, errors are likely to be small relative to the >1,000-fold differences observed across plant species, the primary focus of our article. Finally, contrary to Burd's argument, pollen receipt by entire plants is much more predictable than that by individual flowers because the flower-to-flower variation "averages out" when summed across many flowers. Our model uses parameter values that are in broad agreement with the empirical record of modest plant-to-plant variation in pollen receipt and thus predicts the generally modest pollen limitation that is observed in nature.