Quantcast

Modeling the Ecological Niche of Bacillus anthracis to Map Anthrax Risk in Kyrgyzstan.

Research paper by Jason K JK Blackburn, Saitbek S Matakarimov, Sabira S Kozhokeeva, Zhyldyz Z Tagaeva, Lindsay K LK Bell, Ian T IT Kracalik, Asankadyr A Zhunushov

Indexed on: 25 Jan '17Published on: 25 Jan '17Published in: The American journal of tropical medicine and hygiene



Abstract

Anthrax, caused by the environmental bacterium Bacillus anthracis, is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model-based prediction of B anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Issyk-Kul. These areas should be considered "at risk" for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns.