Modeling electrokinetics in ionic liquids.

Research paper by Chao C Wang, Jie J Bao, Wenxiao W Pan, Xin X Sun

Indexed on: 18 Mar '17Published on: 18 Mar '17Published in: ELECTROPHORESIS


Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electro-osmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on a curved ion-selective surface. We also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems. This article is protected by copyright. All rights reserved.