# Mixed Estimates for Degenerate Multilinear Oscillatory Integrals and
their Tensor Product Generalizations

Research paper by **Robert Kesler**

Indexed on: **12 Nov '13**Published on: **12 Nov '13**Published in: **Mathematics - Classical Analysis and ODEs**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

We prove that the degenerate trilinear operator $C_3^{-1,1,1}$ given by the
formula
\begin{eqnarray*} C_3^{-1,1,1}(f_1, f_2, f_3)(x)=\int_{x_1 < x_2 < x_3}
\hat{f}_1(x_1) \hat{f}_2(x_2) \hat{f}_3(x_3) e^{2\pi i x (-x_1 + x_2 + x_3)}
dx_1dx_2 dx_3 \end{eqnarray*} satisfies the estimate \begin{eqnarray*}
||C_3^{-1,1,1}(\vec{f})||_{\frac{1}{\frac{1}{p_1}+\frac{1}{p_2}+\frac{1}{p_3}}}
\lesssim_{p_1, p_2, p_3} ||\hat{f}_1||_{p^\prime_1} ||f_2||_{p_2}||f_3||_{p_3}
\end{eqnarray*} for all $f_1 \in L^{p_1}(\mathbb{R}): \hat{f}_1 \in
L^{p_1^\prime}(\mathbb{R}) , f_2 \in L^{p_2}(\mathbb{R})$, and $f_3 \in
L^{p_3}(\mathbb{R})$ under the assumption that $p_1 >2,
\frac{1}{p_1}+\frac{1}{p_2} <1$, and $\frac{1}{p_2}+\frac{1}{p_3} <3/2$. Mixed
estimates for some multilinear generalizations of $C_3^{-1,1,1}$ and for
several tensor product operators such as $BHT \otimes BHT$ are also shown. As
an application, we obtain the boundedness of special upper-triangular
biparameter AKNS systems.