Methylation-dependent and independent regulatory regions in the Na,K-ATPase alpha4 (Atp1a4) gene may impact its testis-specific expression.

Research paper by Deepti L DL Kumar, Priya L PL Kumar, Paul F PF James

Indexed on: 08 Sep '15Published on: 08 Sep '15Published in: Gene


The α4 Na,K-ATPase is a sperm-specific protein essential for sperm motility and fertility yet little is known about the mechanisms that regulate its expression in germ cells. Here, the potential involvement of DNA methylation in regulating the expression of this sperm-specific protein is explored. A single, intragenic CpG island (Mα4-CGI) was identified in the gene encoding the mouse α4 Na,K-ATPase (Atp1a4), which displayed reduced methylation in mouse sperm (cells that contain α4) compared to mouse kidney (tissue that lacks α4 expression). Unlike the intragenic CGI, the putative promoter (the -700 to +200 region relative to the transcriptional start site) of Atp1a4 did not show differential methylation between kidney and sperm nevertheless it did drive methylation-dependent reporter gene expression in the male germ cell line GC-1spg. Furthermore, treatment of GC-1spg cells with 5-aza2-deoxycytidine led to upregulation of the α4 transcript and decreased methylation of both the Atp1a4 promoter and the Mα4-CGI. In addition, Atp1a4 expression in mouse embryonic stem cells deficient in DNA methyltransferases suggests that both maintenance and de novo methylation are involved in regulating its expression. In an attempt to define the regulatory function of the Mα4-CGI, possible roles of the Mα4-CGI in regulating Atp1a4 expression via methylation-dependent transcriptional elongation inhibition in somatic cells and via its ability to repress promoter activity in germ cells were uncovered. In all, our data suggests that both the promoter and the intragenic CGI could combine to provide multiple modes of regulation for optimizing the Atp1a4 expression level in a cell type-specific manner.