Quantcast

Metals, Vol. 8, Pages 606: Strength Analysis of a Novel High-Pressure Die with Double-Layered Split Structure

Research paper by Zhuo Yi, Wenzhi Fu, Mingzhe Li, Liang Zhao, Liyan Wang, Rui Li

Indexed on: 04 Aug '18Published on: 03 Aug '18Published in: Metals



Abstract

A novel double-layered split die (DLSD) was designed to have higher pressure-bearing capacity and larger sample cavity volume. In DLSD, the cylinder and first layer supporting ring are split into several blocks. It has a prismatic cylinder and a quasi-prismatic sample cavity. The stress distribution of DLSD was investigated and compared with that of the conventional belt-type die (BTD) and a single-layered split die (SLSD) by the finite element method. The results show that the SLSD can only decrease the stress of the cylinder as there remains significant stress on the first layer supporting ring. However, the novel DLSD can, remarkably, decrease the stress placed on the cylinder and first layer supporting ring simultaneously due to the improvement of the stress states. Additionally, the maximum stress and pressure-bearing capacity of DLSD with different numbers of split blocks were further investigated. It is concluded that the maximum stress of the cylinder increases gradually with an increase in the number of split blocks. Meanwhile, the pressure-bearing capacity decreases accordingly. The experiments show that the pressure-bearing capacities of DLSD with 4 and 8 split blocks are all remarkably higher than that of the BTD. DLSD with 4 split blocks has relatively higher pressure-bearing capacity. This work presents a promising high-pressure die with a double-layered split structure for the synthesis of superhard materials.