Quantcast

Mathematics, Vol. 9, Pages 2495: Koopman Operator Framework for Spectral Analysis and Identification of Infinite-Dimensional Systems

Research paper by Alexandre Mauroy

Indexed on: 14 Oct '21Published on: 05 Oct '21Published in: Mathematics



Abstract

We consider the Koopman operator theory in the context of nonlinear infinite-dimensional systems, where the operator is defined over a space of bounded continuous functionals. The properties of the Koopman semigroup are described and a finite-dimensional projection of the semigroup is proposed, which provides a linear finite-dimensional approximation of the underlying infinite-dimensional dynamics. This approximation is used to obtain spectral properties from the data, a method which can be seen as a generalization of the Extended Dynamic Mode Decomposition for infinite-dimensional systems. Finally, we exploit the proposed framework to identify (a finite-dimensional approximation of) the Lie generator associated with the Koopman semigroup. This approach yields a linear method for nonlinear PDE identification, which is complemented with theoretical convergence results.