Quantcast

Mathematical modelling of ionospheric TEC from Turkish permanent GNSS Network (TPGN) observables during 2009–2017 and predictability of NeQuick and Kriging models

Research paper by Kutubuddin Ansari, Sampad Kumar Panda, Ozsen Corumluoglu

Indexed on: 06 Feb '18Published on: 05 Feb '18Published in: Astrophysics and Space Science



Abstract

The present study examines the ionospheric Total Electron Content (TEC) variations in the lower mid-latitude Turkish region from the Turkish permanent GNSS network (TPGN) and International GNSS Services (IGS) observations during the years 2009 to 2017. The corresponding vertical TEC (VTEC) predicted by Kriging and NeQuick-2 models are evaluated to realize their efficacy over the country. We studied the diurnal, seasonal and spatial pattern of VTEC variation and tried to estimate by a new mathematical model using the long term of 9 years VTEC data. The diurnal variation of VTEC demonstrates a normal trend with its gradual enhancement from dawn to attain a peak around 09:00–14.00 UT and reaching the minimum level after 22.00 UT. The seasonal behavior of VTEC indicates a strong semi-annual variation of VTEC with maxima in September equinox followed by March equinox and minima in June solstice followed by December solstice. Also, the spatial variation in VTEC depicts a meaningful longitudinal/latitudinal pattern altering with seasons. It decreases longitudinally from the west to the east during March equinox and June solstice increases with latitude. The comparative analysis among the GNSS-VTEC, Kriging, NeQuick and the proposed mathematical model are evaluated with the help one way ANOVA test. The analysis shows that the null hypothesis of the models during storm and quiet days are accepted and suggesting that all models are statistically significantly equivalent from each other. We believe the outcomes from this study would complement towards a relatively better understanding of the lower mid-latitude VTEC variation over the Turkish region and analogous latitudes over the globe.