Materials, Vol. 13, Pages 2780: The Effect of Aggregate Shape on the Properties of Concretes with Silica Fume

Research paper by Jarosław Strzałkowski, Halina Garbalińska

Indexed on: 22 Jun '20Published on: 19 Jun '20Published in: Materials


The paper examines the impact of aggregate shape on the compressive strength and thermal properties of concretes with silica fume based on two different aggregates: natural round gravel aggregate and crushed basalt aggregate. Compressive strength and thermal properties of individual concretes were determined during the first year of specimens curing. Additionally, porosity tests were conducted using mercury intrusion porosimetry and optical porosimetry. Mercury porosimetry tests showed that the use of silica fume led to a decrease in the content of pores of size smaller than 0.15 µm compared to the reference concretes without the addition of silica fume. However, tests carried out on crushed basalt-based concrete showed the presence of numerous additional pores with diameters ranging from 0.05 to 300 μm. In case of natural round gravel aggregate-based concrete, the addition of silica fume brought about an increase in its compressive strength. In turn, basalt-based concrete exhibited notably lower compressive strength values due to significantly higher porosity within the range of more than 70 μm. In basalt concrete, the obtained λ values are much lower than in concretes with normal gravel aggregate. In addition, the specific porosity structure had its impact on the process of drying of specimens of each group which occurred at a significantly faster rate in the basalt-based concrete. In conclusion, it can be stated that the use of crushed basalt aggregate causes a significant aeration of concrete, even despite the use of silica fume. As a result, the concrete based on crushed aggregate is characterized by a definitely lower compressive strength, but also better thermal insulation properties compared to analogous concrete made on natural round gravel aggregate.