Quantcast

Magnetohydrodynamic (MHD) boundary layer stagnation point flow and heat transfer of a nanofluid past a stretching sheet with melting

Research paper by Wubshet Ibrahim

Indexed on: 21 Nov '17Published on: 04 Sep '17Published in: Propulsion and Power Research



Abstract

Publication date: Available online 30 August 2017 Source:Propulsion and Power Research Author(s): Wubshet Ibrahim The paper examines the melting heat transfer in magnetohydrodynamic (MHD) stagnation point flow of a nanofluid past a stretching sheet. Boundary layer theory is employed to simplify the system of partial differential equations of motion, energy and concentration to three coupled non-linear ordinary differential equations. The non-linear ordinary differential equations and their boundary conditions are changed into dimensionless form by using suitable similarity variables before numerically solved using fourth order Runge-Kutta-Fehlberg method along with shooting technique. The effect of pertinent parameters on different flow fields are determined and discussed in detail through several plots and tables. The numerical results are obtained for velocity, temperature and concentration profiles. It is found that the skin friction coefficient and Sherwood number decrease with an increase in B and M parameters. However, the local Nusselt number -θ′(0) increases with an increase in B and Nt. Then, the results are compared and found to be in good agreement with the previously published results in limiting cases of the problem.