# L^p Estimates for Semi-Degenerate Simplex Multipliers

Research paper by **Robert M. Kesler**

Indexed on: **19 Sep '16**Published on: **19 Sep '16**Published in: **arXiv - Mathematics - Classical Analysis and ODEs**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

C. Muscalu, T. Tao, and C. Thiele prove $L^p$ estimates for a non-degenerate
trilinear simplex multiplier called the Biest, which is defined for $(f_1, f_2,
f_3) \in \mathcal{S}^3(\mathbb{R})$ by the map C^{1,1,1} : (f_1, f_2, f_3)
\mapsto \int_{\xi_1 < \xi_2 < \xi_3} \hat{f}_1(\xi_1) \hat{f}_2(\xi_2)
\hat{f}_3(\xi_3) e^{2 \pi i x ( \xi_1 + \xi_2 + \xi_3)} d\xi_1 d \xi_2 d\xi_3.
Their methods automatically produce bounds for the collection of all
non-degenerate trilinear simplex symbols. Our aim in this article is to prove
$L^p$ estimates for a pair of so-called semi-degenerate simplex multipliers
given by &&C^{1,1,-2}: (f_1, f_2, f_3) \mapsto \int_{\xi_1 <\xi_2 < \xi_3}
\hat{f}_1(\xi_1) \hat{f}_2(\xi_2) \hat{f}_3(\xi_3) e^{2 \pi i x (\xi_1 + \xi_2
- 2 \xi_3)} d\xi_1 d \xi_2 d \xi_3 && C^{1,1,1,-2}: (f_1, f_2, f_3, f_4)
\mapsto \int_{\xi_1 <\xi_2 < \xi_3< \xi_4} \hat{f}_1(\xi_1) \hat{f}_2(\xi_2)
\hat{f}_3(\xi_3) \hat{f}_4(\xi_4) e^{2 \pi i x (\xi_1 + \xi_2 + \xi_3-2 \xi_4)}
d\xi_1 d \xi_2 d \xi_3 d \xi_4 for which the non-degeneracy condition fails. We
obtain as corollaries that $C^{1,1,-2}$ maps into $L^p(\mathbb{R})$ for all
$1/2< p < \infty$ and $C^{1,1,1,-2}$ maps into $L^p(\mathbb{R})$ for all $1/3 <
p < \infty$. Both target $L^p$ ranges are shown to be sharp.