Low-Rank Tensor Subspace Learning for RGB-D Action Recognition.

Research paper by Chengcheng C Jia, Yun Y Fu

Indexed on: 14 Jul '16Published on: 14 Jul '16Published in: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society


Since RGB-D action data inherently equip with extra depth information compared with RGB data, recently many works employ RGB-D data in a third-order tensor representation containing spatio-temporal structure to find a subspace for action recognition. However, there are two main challenges of these methods. First, the dimension of subspace is usually fixed manually. Second, preserving local information by finding intraclass and inter-class neighbors from a manifold is highly timeconsuming. In this paper, we learn a tensor subspace, whose dimension is learned automatically by low-rank learning, for RGB-D action recognition. Particularly, the tensor samples are factorized to obtain three Projection Matrices (PMs) by Tucker Decomposition, where all the PMs are performed by nuclear norm in a close-form to obtain the tensor ranks which are used as tensor subspace dimension. Additionally, we extract the discriminant and local information from a manifold using a graph constraint. This graph preserves the local knowledge inherently, which is faster than the previous way by calculating both the intra-class and inter-class neighbors of each sample. We evaluate the proposed method on four widely used RGB-D action datasets including MSRDailyActivity3D, MSRActionPairs, MSRActionPairs skeleton and UTKinect-Action3D datasets, and the experimental results show higher accuracy and efficiency of the proposed method.