Quantcast

Lithography Assisted Fiber-Drawing Nanomanufacturing.

Research paper by Behrad B Gholipour, Paul P Bastock, Long L Cui, Christopher C Craig, Khouler K Khan, Daniel W DW Hewak, Cesare C Soci

Indexed on: 16 Oct '16Published on: 16 Oct '16Published in: Scientific Reports



Abstract

We present a high-throughput and scalable technique for the production of metal nanowires embedded in glass fibres by taking advantage of thin film properties and patterning techniques commonly used in planar microfabrication. This hybrid process enables the fabrication of single nanowires and nanowire arrays encased in a preform material within a single fibre draw, providing an alternative to costly and time-consuming iterative fibre drawing. This method allows the combination of materials with different thermal properties to create functional optoelectronic nanostructures. As a proof of principle of the potential of this technique, centimetre long gold nanowires (bulk Tm = 1064 °C) embedded in silicate glass fibres (Tg = 567 °C) were drawn in a single step with high aspect ratios (>10(4)); such nanowires can be released from the glass matrix and show relatively high electrical conductivity. Overall, this fabrication method could enable mass manufacturing of metallic nanowires for plasmonics and nonlinear optics applications, as well as the integration of functional multimaterial structures for completely fiberised optoelectronic devices.