Lexicon-;based sentiment analysis of Arabic tweets

Research paper by Mahmoud Al-Ayyoub, Safa Bani Essa, Izzat Alsmadi

Indexed on: 13 May '16Published on: 09 Oct '15Published in: International Journal of Social Network Mining


Sentiment analysis (SA) and opinions mining (OM) are used to evaluate users' feedbacks and comments on issues related to news, products, services, etc. This topic has received increasing interests over the last decade due to the spread and expansion of social networks. SA for online reviews poses challenges to researchers and decision makers because such comments are written in unstructured formats with usually informal languages, expressions and possibly mixed languages. For Arabic, further challenges exist due to the language complexity and the limited number of research publications and datasets collected and analysed for such purpose. In SA, two approaches are generally used to determine the polarity of reviews: supervised (corpus-;based) and unsupervised (lexicon-;based). In this work, we follow the second approach and build a very large sentiment lexicon and a lexicon-;based SA tool. The results show that the proposed tool performs very well.