Quantcast

Large-Scale Activity in the Bastille Day 2000 Solar Event

Research paper by I. M. Chertok, V. V. Grechnev

Indexed on: 01 Jun '05Published on: 01 Jun '05Published in: Solar Physics



Abstract

We have analyzed dimmings, i.e., regions of temporarily reduced brightness, and manifestations of a coronal wave in the famous event of 14 July 2000 using images produced with the EUV telescope SOHO/EIT. Our analysis was inspired by a paper by Andrews (2001, Solar Phys. 204, 181 (Paper I)), in which this event was studied using running-difference EIT images at 195 Å formed by subtraction of a previous image from each current one. Such images emphasize changes of the brightness, location, and configuration of observed structures occurring during the 12-min interval between two subsequent heliograms. However, they distort the picture of large-scale disturbances caused by a CME, particularly, dimmings. A real picture of dimmings can be obtained from fixed-base difference ‘de-rotated’ images. The latter are formed in two stages: first, the solar rotation is compensated using three-dimensional rotation of all images (‘de-rotation’) to the time of a pre-event heliogram, here 10:00 UT, and then the base heliogram is subtracted from all others. We show real dimmings to be essentially different from those described by Andrews (Paper I). The restructuring of large-scale magnetic fields in the corona in connection with the CME was accompanied by the appearance and growth of two large dimmings. One of them was located along the central meridian, southward of the eruption center, at the place of the pre-eruption arcade. Another dimming occupied the space between the flare region and a remote western active region. Several smaller dimmings were observed virtually over the whole solar disk, especially, within the northwest quadrant. We have also revealed a propagating disturbance with properties of a coronal wave in the northern polar sector, where no dimmings were observed. This fact is discussed in the context of probable association between dimmings and coronal waves. Having suppressed the ‘snowstorm’ produced in the EIT images by energetic particles, we have considered dimming manifestations in all four EIT pass bands of 171, 195, 284, and 304 Å as well as the light curves of the main dimmings including several later images at 195 Å. Our analysis shows that the major cause of the dimmings was density depletion that reached up to 30% in this event. The picture of dimmings implies that the CME in the Bastille Day event was an octopus-like bundle of some magnetic ropes, with the ‘arms’ being connected to several active regions disposed over almost the whole visible solar surface.