Large-Format HgCdTe Dual-Band Long-Wavelength Infrared Focal-Plane Arrays

Research paper by E. P. G. Smith, G. M. Venzor, A. M. Gallagher, M. Reddy, J. M. Peterson, D. D. Lofgreen, J. E. Randolph

Indexed on: 26 Apr '11Published on: 26 Apr '11Published in: Journal of Electronic Materials


Raytheon Vision Systems (RVS) continues to further its capability to deliver state-of-the-art high-performance, large-format, HgCdTe focal-plane arrays (FPAs) for dual-band long-wavelength infrared (L/LWIR) detection. Specific improvements have recently been implemented at RVS in molecular-beam epitaxy (MBE) growth and wafer fabrication and are reported in this paper. The aim of the improvements is to establish producible processes for 512 × 512 30-μm-unit-cell L/LWIR FPAs, which has resulted in: the growth of triple-layer heterojunction (TLHJ) HgCdTe back-to-back photodiode detector designs on 6 cm × 6 cm CdZnTe substrates with 300-K Fourier-transform infrared (FTIR) cutoff wavelength uniformity of ±0.1 μm across the entire wafer; demonstration of detector dark-current performance for the longer-wavelength detector band approaching that of single-color liquid-phase epitaxy (LPE) LWIR detectors; and uniform, high-operability, 512 × 512 30-μm-unit-cell FPA performance in both LWIR bands.