Land, Vol. 10, Pages 480: Variation in Temperature, Precipitation, and Vegetation Greenness Drive Changes in Seasonal Variation of Avian Diversity in an Urban Desert Landscape

Research paper by Fábio Suzart de Albuquerque, Heather L. Bateman, Cameron Boehme, Daniel C. Allen, Luis Cayuela

Indexed on: 16 May '21Published on: 03 May '21Published in: Land


Previous studies in urban desert ecosystems have reported a decline in avian diversity. Herein, we expand and improve these studies by disentangling the effect of land-use and land-cover (LULC) types (desert, riparian desert, urban, riparian urban, agriculture), vegetation greenness (normalized difference vegetation index—NDVI), climate, and their interactions on avian seasonal variation abundance and richness. Avian community data were collected seasonally (winter and spring) from 2001 to 2016. We used generalized linear mixed models (GLMM) and multimodel inference to investigate how environmental predictors explain patterns of avian richness and abundance. Avian abundance and richness oscillated considerably among the years. GLMM indicated that LULC was the most important predictor of avian abundance and richness. Avian abundance was highest in urban riparian and urban LULC types, followed by agriculture. In contrast, avian richness was the highest in riparian environments (urban and desert), followed by agriculture, urban, and desert. NDVI was also strongly related to avian abundance and richness, whereas the effect of temperature and precipitation was moderate. The importance of environmental predictors is, however, dependent on LULC. The importance of LULC, vegetation cover, and climate in influencing the seasonal patterns of avian distribution highlights birds’ sensitivity to changes in land use and cover and temperature.